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Thus, the simultaneously limiting states are attained in all cross sections of the beam 

only under the action of a concentrated force applied at the free end of the beam. 
Therefore, for the problem under consideration (in contrast to the problem discussed in 

Sect.4) there exists the worst force in the class F, for which the optimal solution ob- 

tained with regard solely to that force, is also optimal for the entire class as a whole. 
The author thanks F. L. Chernous’ko for giving consideration to this paper. 
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There is obtained the exact solution of the axisymmetric contact problem on 

the indentation of a circular punch into an elastic half-space having a variable 

modulus of elasticity E = E,z” (Cl < y < 1) in the case of the presence of 
complete cohesion. 

1. For the formulation of the axisymmetric contact problem on the indentation of 
a circular punch into any linearly-deformable foundation, obviously, it is sufficient to 
know the vertical and radial displacements of the surface points of the foundation due 
to the action of vertical and radial loads of the form 

ps(r) = S(r-pP)? q. (r) = 6 (r - P) (r, P > 0) (1.1) 

where 6 (z) is Dirac’s impulse function, describing in this case a concentrated load 
along a circumference (of radius p). 

We adopt the following rule for the signs of the loads and displacements. The verti- 
cal loads and the corresponding displacements are considered to be positive if they are 
oriented downwards while the radial load and displacement is positive if they are orien- 
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ted in the direction in which the value of r increases. 

Assume that the vertical displacements &,*pKss (r, p) and the radial displacements 

--8t*pK,,, (r, p) are known in terms of the load p. (r) and that the vertical displace- 

ments --8,*pKOl (r, 8) and the radial displacements 8,*pK11 (r, p) are known in 
terms of the load q,, (r). (Here the signs for displacements are taken as in the case of 

the classical foundation of a homogeneous isotropic half-space). 

Then, denoting the unknown normal and tangential contact stresses under the circular 

punch (of radius a) by p (r) and q (r), respectively, we arrive at the following system 
of integral equations : a a 

OO* \Koo(r, P)pp(P)dp- h*SKodr, P)w(P)dp = f(r) (l-2) 
1, 0 

&* 5 Kll (r, p) pq (p) dp - @I* i Go (r, PI PP (P)~P = g (4 
0 0 

Here f (r) and g (r) are given functions (defining the displacements in the contact 
zone), where the first is given, up to an additive constant (penetration of the punch), 
while the second vanishes at zero. 

We note that in the case of the classical foundation the influence function K,, is 
determined by the formulas (J, (z) 

K,,, (r, p) = Wkn (r, P), 

el* = (I - 2~) (1 + P) E-5 

is Bessel’s function) 

e,," = &+ = 2E-l(i -p") (1.3) 
0 

WY,,, (r, p) = s fJ, (W J, @PI dt 
0 

Let us consider next the construction of the influence function for the half-space with 
a modulus of elasticity of the form E = E,zv. We make use of the fact that in the 
plane problem the analogous function can be easily constructed (see results of [l, 21). 

As a result we find that under the action of a vertical (downward) load p (2) on the 
boundary of a half-plane, with the indicated modulus of elasticity, the verical displace- 
ments wP (x) and the horizontal displacements up (z) (the z-axis is oriented to the 

right) of the boundary points of the half-plane can be represented in the form 

00 m 
l 

wp (ST) = e. s P (14 dv w (x - 11) P (Y/) d.v 

_mv lz--?/I” ’ 
qE) = -el s (1.4) 

--co Ix-Yl” 

8, = 
(1 - p2) yC,sin r/z Vt 8 

(l_tY)E, ’ l 
= _ (1 - p2) c, coa l/z -fn 

YE” 

c, = 2”+’ r [‘I2 (v + 7 + 3)l r p/z (v - 7 + 3)l 
S(v + 2) 

) y”=(l+v) l+- 
t -P 1 

Under the action of a horizontal (from left to right) load p (x) on the boundary of the 

half-plane,the corresponding displacements have the form 

’ a. 

wq tz) = e1 s sgn (x - Y) 9 (Y) dy 

Ix-Yl” ’ 
uq (CT) = 0, (1.5) 

--JD 

e2yEv - (1 - pa) (1 + v) C, sin 1/2 y7t 
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The given formulas (1.4), (1.5) allow us to construct the required influence functions. 
To this end, we use the transition formulas from plane to axisymmetric states given in 
[3]. In conformity with the displacements of the surface points they have the form 

m m 

U’(F) = - $ s x au* (x) 

r rr/,z (1.6) 

Here &‘(rj and u” (r) are the vertical and the radial displacements of the foundation 

surface points in the axisymmetric state, while w* (2) and U* (z) are the vertical 
and the horizontal displacements of the corresponding plane state. 

We denote, for example, by uloo (rj the radial displacements of the foundation sur- 
face points due to the load p,, (r), According to [3], the corresponding horizontal dis- 

placements uia* (2) of the plane state, taking into account (1.4) are determined by 

the formula P 

z&* (x) = - 2pe, s sgn (x -4 &I 
_-pIIL.-YIy l/p2 

(1.7) 

Reducing here the integration to the interval (0, p) and using the formula 3.762(2) of 
[4], after interchanging the order of integration and differentiation we obtain 

30 

duln* (2) 2pne1 

ClX = - r(v) sin’/2 VC \ 
’ tY cos xtJ, (pt) dt = 

b 
(1.8) 

m 

2pne1 

zr (v) sin l/z vn s 
’ sin zt d [PJ,, (pt) 
0 

The second equality is obtained by integrating by parts. Substituting (1.8) into the 
second formula of (1.6) after interchanging the order of integration, using the formula 

3.753(3) of [4] and integrating by parts, we find 

Ulao (F) = - 8,np [sin 1/z vnr (Y)]-l Wlov (r, p) (1.9) 

Proceeding in the same way for the determination of the other displacements, we find 

that regarding the half-space with E = E/Z’ , the influence functions and the para- 

meters contained in (1.2) have the form 

(1.10) 

i.e. as in the case of the classical foundation, the influence functions are expressed in 

terms of the Weber-Sonin integrals (1.3). 

2. We reduce the system of integral equations (1.2) corresponding to the case 
(1.10) to a unique integral equation admitting an exact solution. We consider the inte- 

grals 

P(t) = 5 JoPP~PP~P~Gh Q (t) = 5 JI (@) w (P) dp (2.1) 
0 0 

If we make use of the representations [4] 
P 

(2.2) 



Axisymmetric contact problem for an elastic Inhomogeneous half-space 1055 

then, after interchanging the order of integration, instead of (2.2) we have 

P(f)=[o(s)COStSds, Q(t)=tr(s)eintsds 
0 0 

a 

cj(++' fJP(PJdP , 

a 

s s I/pa-- sa 
r(s) =?Ls cr(P)dP 

8 If/p2 - sa 

(2.3) 

(2.4) 

The functions (J (a) and z (S) will be continued, by necessity, for negative values of the 
argument as even and odd functions, respectively, i. e. 

u (-a) = 0 (a), z (-a) = --T (s) (2.5) 

Taking into account (1.10) and (1.3),weinterchange in (1.2) the order of integration 
and we make use of (2. l), (2.3), (2.4). Then, to the first and the second of the equations 

(1.2) we apply, respectively, the operators 

r’[qI(s)] =&$$, J’hWl =&i yy&a~vPW (2.6) 
0 0 

The subsequent use of the formulas of Sonin [4] 

(2.7) 

reduces Eqs. (1.2) to the form 

O&s)dS[ si*r;r::rs at- ol*~T(s)&js’nl:;y~ dt = I’[f(x)] (2.8) 

0 0 0 0 

-e,*&)ds\ 
’ (cos tl: - 1) sin ts dt + 

tl-v 

0 
a 

el*; a(+q 

. 
7 costr-$osts & = J’[g (z)] 

0 0 

Using formulas 3.762, 3.761(4), 3.761(9) of [4], of the assumption (2.5) as well as of 
the formulas (1.10). (1.4) and (1.5) instead of (2.8) we have 

a a 

’ s sgn (x - s) d (s) as tg ‘/a hn ’ 

s 

z(s) ds 

-a Ir-sy - x(tg’hvS1)2 ~ jz_&.l’ = 
(2.9) 

x 
2x-l tg ‘/a hn. 

s 
f (r) r dr = 

ne1 tg1/a Yrc o I/,a 

a a a 

s 

sgn (z - s) z (s) as x tg ‘la hx 
s 

0 (s) as 

Ix-sl’ + (tg %vV _-a 1 z -t 1” = s 

sgn (- s) z (s) ds 

I sl” 
+ 

-a --a 
a x 

X tg 'la LiT 
s 

0 (S)dS 2X tg ‘/a hII 

s 
sg (r) dr 

(tg '/a VIX)a _ ) ~1” + J&tg’/aVX o I/,- 

(h = @y - 1, x =ii + h) (1 + v)_‘) 
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Multiplying the first equation of (2.9) by VT;, the second one by ix-% and adding the 
results, we obtain the unique integral equation 

a 

s [k, (5 - s)-k,(-s)]x(s)ds==F(z) (2.10) 
--a 

relative to the complex function 
x (s) = l/G (s) + x-‘&7 (s) (2.11) 

The kernel and the right-hand side of the equation (2.10) are defined by the formulas 

kg (y) = 1 y I-’ Isgn y + itgr/shz (ctg 1/,~n)21 (2.12) 

F (x) = 
1 

if (ZP) P + w (ZP)l dP 

v-1 

3. The solution of the obtained integral equation can be constructed in an explicit 
form by the method of reduction to the Riemann boundary value problem ( [5], p. 603 of 
Russian edition). However it is more convenient to make use of the following spectral 
relation for the Jacobi polynomials P$ ’ (z): 

dk+l 4 

SL w(x--)+ 
tg LTc (a + Q!Y) 

dXk+l t.g i/z vn 1 (a - ty 1 z -- t 1” (3.1) 

--a 

nI’ (m + v + k + 1) Pcvta, -a (x/a) 

p (v) sin i/2 vn: cos n (c( + l/0) ml 

(O<Rev<l, %a>--1, k=O,i,2, . ..) 

This relation is the generalization of the spectral relation given in [6] to the case Y # 
0 and is proved by the same method. 

In order to apply the spectral relation (3. l), we differentiate both sides of Eq.(2.10) 

d a s[ w (5 - 4 + 
i tg i/a hx 1 x (‘I dz (Q l/a Y?1)2 1 x - s 1” & = F’ @) 

(3.2) 
--a 

Then, from the equation tg at (a + l/a Y) = i tg 1/,&c ctg llzvn we find that 

(3.3) 

We can show that v > h, v + h < 2. 
The existence of the spectral relation (3.1) allows us to apply the method of ortho- 

gonal polynomials p] in order to obtain the exact solution of the equation (3.2). As a 
result we obtain 

&PP (x) 
x@) = 2, cp;l;j) ’ (Pi3 (4 = 

(a - zp (a + x)-i0 (3.4) 
($ - .2)“!2 

x n!‘(V f 1 + 2n) I? (Y) sinl/a Y~C ch $F, 
n 

= 

z (2a)i+v 1 r (1 + n + ‘/zv + ip) lr - 
(3.5) 
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a 
F, = 

F’ (x) PgB (x) dx 

‘p-6 (4 (3.6) 

The desired contact stresses under the punch, according to (2.4) and (2.11), are deter- 

mined by the formulas 

(34 7) 

where, for the separation of the imaginary and real parts in (3.4) we can use the formula 

Taking into account the formulas (2. l), (2.3). (2.5) and (2.11) we find that the force 
which compresses the punch is 

a a 

P=2n’rp(r)dr=n: 
s s 

6 (8) as = - 
0 

j, Re[{ X(SM] 
-a -a 

Substituting the series (3.4) into the last formula and using the orthogonality of Jacobi 
polynomials, we obtain 

P = X-%&in r/evn ch nj3 Re [P,l (3.3) 

4, In conclusion we consider an important particular case of the problem under con- 
sideration, when the base of the punch is plane and the punch is loaded by a central 
force P. We denote the .desired magnitude of the penetration of the punch by 6. In 
this case the right-hand sides of the system (1.2) become essentially simpler 

f (9 = 6, g (r) = 0 (4.1) 

which, in turn, leads to the simplification of the formulas (2.12) and (3.6) 

F’(x) -- 2 tg 11% hn8 
F, = % ( r (1 + vav + $3) 1% tg ‘/a hnb 

nel tg 11% vz T/x ’ x (2a)_1” r (Y + 2) 01 ?% tg %Yzt 
(4.2) 

Substituting the last expression into (3.8). we find the penetration of the punch 

6= 
Pxn (1 - P) r (Y + 2) c, cos ‘/z hn 

2% @a)“+” I I’ (1 + Vav + ip) 1% ch np cos QY~C 
(4.3) 

The formulas for the contact stresses (3.7) also become essentially simpler since by 
virtue of (4.2) and the orthogonality of Ja~bipolynom~als,we have F,, = 0, n = 1, 
2 , *** and in the series (3.4) only the first term remains, i. e. 

x (s) = x0 (a2 - Sa)y/2 (a - .9)-Q (a + s)@ (4.4) 

Substituting,this expression into (3.7) and using (3.5), (4.2) and (4.3), we obtain for the 
case under consideration the following formulas for the contact stresses: 
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rp(r) = - pr 0 + 2) 
(w’+’ I r (1 + ‘lzv -t_ $3) 1 (4.5) 

cro*) = - 

sin p In 

Setting y = 0 in the above formulas, we obtain the ~rres~nding results for the class- 

ical foundation. The formula (4.3) takes the form obtained in [8, 93. As far as the for- 
mulas (4.5) for the contact stresses are concerned, they (for y = 0) take the form dif- 
ferent in structure from those derived in 18, 91. In order to arrive at the formuias given 
in [S], it is necessary to perform a series of preliminary nontrivial operations (these ope- 
rations conceptually are similar to those carried out in paper [lo] in solving the analog- 
ous problem for a classical foundation). 

These operations consist in the following. We introduce the functions 
a a 

p*(r) = 
s 
’ r’p (r) dr, q* (2) = 

z s 
’ g (T) dr (4.6) 

x 
and we integrate both formulas (3.7) along the interval (z, a), after which we apply the 
operator r defined by (2.6). As a result, instead of (3.7) (taking into account (2.11)) 

we have a * 

r [pb (%)I = 11 (r, Sf 53 (s) 2% I [q’ (41 = 1 l (z, f) t (4 ds (4.7) 
0 0 

min Cc, s) 

s 

udu x+s 
1(x, s) = 

[(x2 - 23) (9 - L‘~)]“S 
=$ln - 

I 1 x-s 
0 

Taking into account (2.5). we replace the integration interval in the relations (4.7) by 
the interval (-a, a), after which we differentiate them. As a result we obtain 

where I’ is the finite Hilbert transform. 
Then, taking into account the identity 

s (s - 2)-l = 1 + r (s - $1 

we write the first relation of (4.8) in the form 

Applying to this and to the second relation of (4.8) Abe>: transformation formulas 

and taking into account (4,6), we obtain 

jfFp(r)f ix-‘:‘*(T)= --+-g~ ran 
(4.9) 
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Substituting here the solution of the integral equation (3.2), we obtain another form of 
the solution of the problem under consideration, If we make use of the solution of the 
indicated equation in the form of the series (3.4) then it is necessary to compute the 

finite Hilbert transform of the Jacobi polynomial with the corresponding weight. Such 
a computation has been performed for the first time in Ill]. The corresponding result 
(for a = 1) has the form 

l’ (u) l’ (p + m + 1) F (m + 1, - a - p - m: 1 - cc; l/a - */2~) 

n2-“-ar(u+p+,+i) 

It is contained also in [6]. in order to obtain the formulas for the contact stresses for a 

punch with a plane base given in l-81, it is necessary to substitute (4.4) into (4.9) take 
into account (4.10) and perform the limiting process Y -_) 9. 
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